DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LHF08CH1 Просмотр технического описания (PDF) - Sharp Electronics

Номер в каталоге
Компоненты Описание
производитель
LHF08CH1
Sharp
Sharp Electronics Sharp
LHF08CH1 Datasheet PDF : 55 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
sharp
LHF08CH1
8
3 BUS OPERATION
The local CPU reads and writes flash memory
in-system. All bus cycles to or from the flash memory
conform to standard microprocessor bus cycles.
3.1 Read
Information can be read from any block, identifier
codes, or status register independent of the VPP
voltage. RP# can be at either VIH or VHH.
The first task is to write the appropriate read mode
command (Read Array, Read Identifier Codes, or
Read Status Register) to the CUI. Upon initial device
power-up or after exit from deep power-down mode,
the device automatically resets to read array mode.
Four control pins dictate the data flow in and out of
the component: CE#, OE#, WE#, and RP#. CE# and
OE# must be driven active to obtain data at the
outputs. CE# is the device selection control, and
when active enables the selected memory device.
OE# is the data output (DQ0-DQ7) control and when
active drives the selected memory data onto the I/O
bus. WE# must be at VIH and RP# must be at VIH or
VHH. Figure 15 illustrates a read cycle.
3.2 Output Disable
With OE# at a logic-high level (VIH), the device
outputs are disabled. Output pins DQ0-DQ7 are
placed in a high-impedance state.
3.3 Standby
CE# at a logic-high level (VIH) places the device in
standby mode which substantially reduces device
power consumption. DQ0-DQ7 outputs are placed in
a high-impedance state independent of OE#. If
deselected during block erase, byte write, or lock-bit
configuration, the device continues functioning, and
consuming active power until the operation
completes.
3.4 Deep Power-Down
RP# at VIL initiates the deep power-down mode.
In read modes, RP#-low deselects the memory,
places output drivers in a high-impedance state and
turns off all internal circuits. RP# must be held low for
a minimum of 100 ns. Time tPHQV is required after
return from power-down until initial memory access
outputs are valid. After this wake-up interval, normal
operation is restored. The CUI is reset to read array
mode and status register is set to 80H.
During block erase, byte write, or lock-bit
configuration modes, RP#-low will abort the
operation. RY/BY# remains low until the reset
operation is complete. Memory contents being
altered are no longer valid; the data may be partially
erased or written. Time tPHWL is required after RP#
goes to logic-high (VIH) before another command can
be written.
As with any automated device, it is important to
assert RP# during system reset. When the system
comes out of reset, it expects to read from the flash
memory. Automated flash memories provide status
information when accessed during block erase, byte
write, or lock-bit configuration modes. If a CPU reset
occurs with no flash memory reset, proper CPU
initialization may not occur because the flash memory
may be providing status information instead of array
data. SHARP’s flash memories allow proper CPU
initialization following a system reset through the use
of the RP# input. In this application, RP# is controlled
by the same RESET# signal that resets the system
CPU.
Rev. 1.3

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]