DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LTC1598LCG Просмотр технического описания (PDF) - Linear Technology

Номер в каталоге
Компоненты Описание
производитель
LTC1598LCG Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LTC1594L/LTC1598L
APPLICATIONS INFORMATION
edge, the S & H goes into hold mode and the conversion
begins. The voltage on the “COM” input must remain
constant and be free of noise and ripple throughout the
conversion time. Otherwise, the conversion operation
may not be performed accurately. The conversion time is
12 CLK cycles. Therefore, a change in the “COM” input
voltage during this interval can cause conversion errors.
For a sinusoidal voltage on the “COM” input this error
would be:
VERROR(MAX) = VPEAK(2π)(f)(“COM”)12/fCLK
Where f(“COM”) is the frequency of the “COM” input
voltage, VPEAK is its peak amplitude and fCLK is the
frequency of the CLK. In most cases, VERROR will not be
significant. For a 60Hz signal on the “COM” input to
generate a 0.5LSB error (305µV) with the converter
running at CLK = 200kHz, its peak value would have to be
5.266mV.
ANALOG INPUTS
Because of the capacitive redistribution A/D conversion
techniques used, the analog inputs of the LTC1594L/
LTC1598L have capacitive switching input current spikes.
These current spikes settle quickly and do not cause a
problem. However, if large source resistances are used
or if slow settling op amps drive the inputs, care must be
taken to insure that the transients caused by the current
spikes settle completely before the conversion begins.
“Analog” Input Settling
The input capacitor of the LTC1594L/LTC1598L is switched
onto the selected channel input during the tSMPL time (see
Figure 7) and samples the input signal within that time. The
sample phase is at least 1 1/2 CLK cycles before conver-
sion starts. The voltage on the “analog” input must settle
completely within tSMPL. Minimizing RSOURCE+ and C1 will
improve the input settling time. If a large “analog” input
source resistance must be used, the sample time can be
increased by using a slower CLK frequency.
“COM” Input Settling
At the end of the tSMPL, the input capacitor switches to the
“COM” input and conversion starts (see Figures 1 and 7).
During the conversion, the “analog” input voltage is
effectively “held” by the sample-and-hold and will not
affect the conversion result. However, it is critical that the
“COM” input voltage settles completely during the first
CLK cycle of the conversion time and be free of noise.
Minimizing RSOURCE– and C2 will improve settling time.
If a large “COM” input source resistance must be used,
the time allowed for settling can be extended by using a
slower CLK frequency.
Input Op Amps
When driving the analog inputs with an op amp it is
important that the op amp settle within the allowed time
(see Figure 7). Again, the “analog” and “COM” input
sampling times can be extended as described above to
accommodate slower op amps. Most op amps, including
the LT®1006 and LT1413 single supply op amps, can be
made to settle well even with the minimum settling
windows of 7.5µs (“analog” input) which occur at the
maximum clock rate of 200kHz.
Source Resistance
The analog inputs of the LTC1594L/LTC1598L look like a
20pF capacitor (CIN) in series with a 1k resistor (RON) and
a 90channel resistance as shown in Figure 8. CIN gets
switched between the selected “analog” and “COM”
inputs once during each conversion cycle. Large external
source resistors and capacitances will slow the settling
of the inputs. It is important that the overall RC time
constants be short enough to allow the analog inputs to
completely settle within the allowed time.
“ANALOG”
RSOURCE + INPUT
VIN +
MUX
RON
90
C1
VIN
RSOURCE
MUXOUT
ADCIN
“COM”
INPUT
C2
LTC1594L
RON LTC1598L
1k
CIN
20pF
1594L/98L F08
16
Figure 8. Analog Input Equivalent Circuit
15948lfb

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]