DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ISL21007 Просмотр технического описания (PDF) - Renesas Electronics

Номер в каталоге
Компоненты Описание
производитель
ISL21007
Renesas
Renesas Electronics Renesas
ISL21007 Datasheet PDF : 20 Pages
First Prev 11 12 13 14 15 16 17 18 19 20
ISL21007
Noise Performance and Reduction
The output noise voltage in a 0.1Hz to 10Hz bandwidth is typically
4.5µVP-P. The noise measurement is made with a bandpass filter
made of a 1-pole high-pass filter with a corner frequency at 0.1Hz
and a 2-pole low-pass filter with a corner frequency at 12.6Hz to
create a filter with a 9.9Hz bandwidth. Noise in the 10kHz to 1MHz
bandwidth is approximately 40µVP-P with no capacitance on the
output. This noise measurement is made with a 2 decade
bandpass filter made of a 1-pole high-pass filter with a corner
frequency at 1/10 of the center frequency and 1-pole low-pass
filter with a corner frequency at 10 times the center frequency.
Load capacitance up to 1000pF can be added but will result in
only marginal improvements in output noise and transient
response. The output stage of the ISL21007 is not designed to
drive heavily capacitive loads, so for load capacitances above
0.001µF, the noise reduction network shown in Figure 55 on
page 17 is recommended. This network reduces noise significantly
over the full bandwidth. Noise is reduced to less than 20µVP-P from
1Hz to 1MHz using this network with a 0.01µF capacitor and a 2kΩ
resistor in series with a 10µF capacitor. Also, transient response is
improved with higher value output capacitor. The 0.01µF value can
be increased for better load transient response with little sacrifice
in output stability.
Turn-On Time
The ISL21007 devices have low supply current and thus the time
to bias up internal circuitry to final values will be longer than with
higher power references. Normal turn-on time is typically 120µs.
This is shown in Figure 10. Circuit design must take this into
account when looking at power-up delays or sequencing.
Temperature Coefficient
The limits stated for temperature coefficient (tempco) are governed
by the method of measurement. The overwhelming standard for
specifying the temperature drift of a reference is to measure the
reference voltage at two temperatures, take the total variation,
(VHIGH – VLOW), and divide by the temperature extremes of
measurement (THIGH – TLOW). The result is divided by the nominal
reference voltage (at T = +25°C) and multiplied by 106 to yield
ppm/°C. This is the “Box” method for specifying temperature
coefficient.
Output Voltage Adjustment
The output voltage can be adjusted up or down by 2.5% by placing a
potentiometer from VOUT to ground, and connecting the wiper to the
TRIM pin. The TRIM input is high impedance, so no series resistance
is needed. The resistor in the potentiometer should be a low tempco
(<50ppm/°C) and the resulting voltage divider should have very low
tempco <5ppm/°C. A digital potentiometer such as the ISL95810
provides a low tempco resistance and excellent resistor and tempco
matching for trim applications. See Figure 59 and TB473 for further
information.
VIN = 5.0V
0.1µF
10µF
VIN
VO
ISL21007
GND
0.01µF
2kΩ
10µF
FIGURE 55. HANDLING HIGH LOAD CAPACITANCE
Typical Application Circuits
VIN = +5.0V
R = 200Ω
2N2905
VIN
ISL21007 VOUT
VOUT = 2.500V
GND
2.5V/50mA
0.001µF
FIGURE 56. PRECISION 2.500V 50mA REFERENCE
FN6326 Rev.12.00
Jun 9, 2017
Page 17 of 20

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]