DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ISL6131 Просмотр технического описания (PDF) - Renesas Electronics

Номер в каталоге
Компоненты Описание
производитель
ISL6131
Renesas
Renesas Electronics Renesas
ISL6131 Datasheet PDF : 15 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
ISL6131, ISL6132
Description and Operation
The ISL6131 is a four-voltage, high-accuracy, supervisory IC
designed to monitor multiple voltages greater than 0.7V relative
to Pin 10 of the IC.
Upon VDD bias power-up, the STATUS and PGOOD outputs are
held correctly low once VDD is as low as 1V. Once biased to 1.5V,
the IC continuously monitors from one to four voltages
independently through external resistor dividers, comparing each
voltage monitoring (VMON) pin voltage to an internal 0.633V
(VVMONvth) reference.
With the EN input driven high or open, as each VMON input rises
above VVMONvth, a timer is set to ensure ~160ms of continuous
compliance. Then the related STATUS output is released to be
pulled high. The STATUS outputs are open-drain to allow OR’ing of
these signals and interfacing to a logic high level up to VDD. The
STATUS outputs are designed to reject short transients (~30s)
on the VMON inputs. Once all STATUS outputs are high, a
Power-Good (PGOOD) output signal is generated high to indicate
that all monitored voltages are greater than minimum
compliance level.
Once any VMON input falls below VVMONvth for longer than the
glitch filter time, both the PGOOD and the related STATUS output
are pulled low. The other STATUS outputs remain high as long as
their corresponding VMON voltage remains valid and the PGOOD
validation process is reset.
Figure 1 shows the ISL6131 typical application schematic, and
Figure 3 is an operational timing diagram. See Figures 10 to 17 for
ISL6131 function and performance. Figures 10 and 11 show the
VDD rising along with STATUS and PGOOD response. Figures 12
and 13 illustrate VMON falling below VVMONvth, and Figure 14
shows VMON rising above VVMONvth with STATUS and PGOOD
response. Figure 15 shows VDD failing, with STATUS and PGOOD
response. Figures 16 and 17 show ENABLE to STATUS and PGOOD
timing.
If less than four voltages are being monitored, connect the
unused VMON pins to VDD for proper operation. All unused
STATUS outputs can be left open.
The ISL6132 is a dual voltage monitor for undervoltage and
overvoltage compliance. Figure 2 shows the typical ISL6132
implementation schematic, and Figure 4 is the operational timing
diagram.
There are two pairs of monitors, each with an undervoltage
(UVMON) input and an overvoltage (OVMON) input, along with
associated STATUS and PGOOD outputs.
Upon VDD bias power-up, the STATUS and PGOOD outputs are
held correctly low, once VDD is as low as 1V. Once biased to 1.5V,
the IC continuously monitors the voltage through external resistor
dividers, comparing each VMON pin voltage to an internal 0.633V
reference. At proper bias, OVSTATUS is pulled high, and
UVSTATUS and PGOOD are pulled low. Once the UVMON
input > VMON Vth continuously for ~160ms, its associated
STATUS output releases high, indicating that the minimum
voltage condition has been met. As both UVMON and OVMON
inputs are satisfied, the PGOOD output is released to go high,
indicating that the monitored voltage is within the specified
window. Figure 18 shows this performance for a 4V to 5V
window.
When VMON does not satisfy its voltage high or low criteria for
more than the glitch filter time, the associated STATUS and
PGOOD are pulled low. Figures 19 and 20 show this performance
for a 4V to 5V compliant window.
Figures 21 through 23 show the VMON glitch filter timing to
STATUS and PGOOD notification and transient immunity.
The ENABLE input, when pulled low, allows the monitoring and
reporting functions to be disabled. Figure 24 shows ENABLE high
to PGOOD timing for compliant voltage.
When choosing resistors for the divider, remember to keep the
current through the string bounded by power loss tolerance at the
top end and noise immunity at the bottom end. For most
applications, total divider resistance in the 10k-100krange
is advisable, with 1% tolerance resistors being used to reduce
monitoring error.
Figures 1 and 2 show that choosing the two resistor values is
straightforward for the ISL6131, because the ratio of resistance
should equal the ratio of the desired trip voltage to the internal
reference, 0.633V.
For the ISL6132, two dividers of two resistors each can be
employed to monitor the OV and UV levels for each voltage.
Otherwise, use a single three-resistor string for each voltage. In
the three-resistor divider string, the ratio of the desired
overvoltage trip point to the internal reference is equal to the
ratio of the two upper resistors to the lowest (GND connected)
resistor. The desired undervoltage trip point ratio to the internal
reference voltage is equal to the ratio of the uppermost (voltage
connected) resistor to the two lower resistors, as shown in the
following example:
1. Establish lower and upper trip level: 3.3V ±20% or 2.64V (UV)
and 3.96V (OV)
2. Establish total resistor string value: 10kIr = divider current
3. (Rm + Rl) * Ir = 0.623V @ UV and Rl * Ir = 0.633V @ OV
4. Rm + Rl = 0.623V/Ir @ UV => Rm + Rl =
0.623V/(2.64V/10kΩ) = 2.359kΩ
5. Rl = 0.633V/Ir @ OV => Rl = 0.633V/(3.96V/10kΩ) = 1.598kΩ
6. Rm = 2.359kΩ - 1.598kΩ = 0.761kΩ
7. Ru = 10kΩ - 2.397kΩ = 7.641kΩ
Choose standard value resistors that most closely approximate
these ideal values. Choosing a different total divider resistance
value may yield a more ideal ratio with available resistors values.
FN9119 Rev 6.00
February 11, 2014
Page 5 of 15

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]