DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MX29F8100 Просмотр технического описания (PDF) - Macronix International

Номер в каталоге
Компоненты Описание
производитель
MX29F8100 Datasheet PDF : 37 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
INDEX
MX29F8100
READ/RESET COMMAND
The read or reset operation is initiated by writing the read/
reset command sequence into the command register.
Microprocessor read cycles retrieve array data from the
memory. The device remains enabled for reads until the
CIR contents are altered by a valid command sequence.
The device will automatically power-up in the read/reset
state. In this case, a command sequence is not required
to read data. Standard microprocessor read cycles will
retrieve array data. This default value ensures that no
spurious alteration of the memory content occurs during
the power transition. Refer to the AC Read
Characteristics and Waveforms for the specific timing
parameters.
The MX29F8100 is accessed like an EPROM. When CE
and OE are low and WE is high the data stored at the
memory location determined by the address pins is
asserted on the outputs. The outputs are put in the high
impedance state whenever CE or OE is high. This dual
line control gives designers flexibility in preventing bus
contention.
CE stands for the combination of CE1 and CE2 in 48-pin
TSOP package. CE stands for CE1 in 44-pin SOP
package.
Note that the read/reset command is not valid when
program or erase is in progress.
PAGE PROGRAM
To initiate Page program mode, a three-cycle command
sequence is required. There are two " unlock" write
cycles. These are followed by writing the page program
command-A0H.
Any attempt to write to the device without the three-cycle
command sequence will not start the internal Write State
Machine(WSM), no data will be written to the device.
After three-cycle command sequence is given, a
byte(word) load is performed by applying a low pulse on
the WE or CE input with CE or WE low (respectively) and
OE high. The address is latched on the falling edge of CE
or WE, whichever occurs last. The data is latched by the
first rising edge of CE or WE. Maximum of 128 bytes of
data may be loaded into each page by the same
procedure as outlined in the page program section below.
BYTE-WIDE LOAD/WORD-WIDE LOAD
Byte(word) loads are used to enter the 128 bytes(64
words) of a page to be programmed or the software codes
for data protection. A byte load(word load) is performed
by applying a low pulse on the WE or CE input with CE or
WE low (respectively) and OE high. The address is
latched on the falling edge of CE or WE, whichever occurs
last. The data is latched by the first rising edge of CE or
WE.
Either byte-wide load or word-wide load is
determined(Byte = VIL or VIH is latched) on the falling
edge of the WE(or CE) during the 3rd command write
cycle.
PROGRAM
Any page to be programmed should have the page in the
erased state first, i.e. performing sector erase is
suggested before page programming can be performed.
The device is programmed on a page basis. If a
byte(word) of data within a page is to be changed, data for
the entire page can be loaded into the device. Any
byte(word) that is not loaded during the programming of
its page will be still in the erased state (i.e. FFH). Once
the bytes of a page are loaded into the device, they are
simultaneously programmed during the internal
programming period. After the first data byte(word) has
been loaded into the device, successive bytes(words)
are entered in the same manner. Each new byte(word)
to be programmed must have its high to low transition on
WE (or CE) within 30us of the low to high transition of WE
(or CE) of the preceding byte(word). A6 to A18 specify
the page address, i.e., the device is page-aligned on 128
bytes(64 words)boundary. The page address must be
valid during each high to low transition of WE or CE. A-1
to A5 specify the byte address within the page, A0 to A5
specify the word address withih the page. The
byte(word) may be loaded in any order; sequential
loading is not required. If a high to low transition of CE or
WE is not detected whithin 100us of the last low to high
transition, the load period will end and the internal
programming period will start. The Auto page program
terminates when status on DQ7 is '1' at which time the
device stays at read status register mode until the CIR
contents are altered by a valid command
sequence.(Refer to table 3,6 and Figure 1,7,8)
P/N: PM0262
REV. 2.0, JAN. 22, 1999
9

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]