DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY8C4125FNI-483(T) Просмотр технического описания (PDF) - Cypress Semiconductor

Номер в каталоге
Компоненты Описание
производитель
CY8C4125FNI-483(T)
Cypress
Cypress Semiconductor Cypress
CY8C4125FNI-483(T) Datasheet PDF : 43 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
PSoC® 4: PSoC 4100 Family
Datasheet
Two Opamps (CTBm Block)
PSoC 4100 has two opamps with Comparator modes which
allow most common analog functions to be performed on-chip
eliminating external components; PGAs, voltage buffers, filters,
trans-impedance amplifiers, and other functions can be realized
with external passives saving power, cost, and space. The
on-chip opamps are designed with enough bandwidth to drive
the S/H circuit of the ADC without requiring external buffering.
Temperature Sensor
PSoC 4100 has one on-chip temperature sensor This consists
of a diode, which is biased by a current source that can be
disabled to save power. The temperature sensor is connected to
the ADC, which digitizes the reading and produces a temper-
ature value using Cypress supplied software that includes
calibration and linearization.
Low-power Comparators
PSoC 4100 has a pair of low-power comparators, which can also
operate in the Deep Sleep and Hibernate modes. This allows the
analog system blocks to be disabled while retaining the ability to
monitor external voltage levels during low-power modes. The
comparator outputs are normally synchronized to avoid metasta-
bility unless operating in an asynchronous power mode
(Hibernate) where the system wake-up circuit is activated by a
comparator switch event.
Fixed Function Digital
Timer/Counter/PWM Block (TCPWM)
The TCPWM block consists of four 16-bit counters with
user-programmable period length. There is a Capture register to
record the count value at the time of an event (which may be an
I/O event), a period register which is used to either stop or
auto-reload the counter when its count is equal to the period
register, and compare registers to generate compare value
signals which are used as PWM duty cycle outputs. The block
also provides true and complementary outputs with program-
mable offset between them to allow use as deadband program-
mable complementary PWM outputs. It also has a Kill input to
force outputs to a predetermined state; for example, this is used
in motor drive systems when an overcurrent state is indicated
and the PWMs driving the FETs need to be shut off immediately
with no time for software intervention.
Serial Communication Blocks (SCB)
The PSoC 4100 has two SCBs, which can each implement an
I2C, UART, or SPI interface.
I2C Mode: The hardware I2C block implements a full
multi-master and slave interface (it is capable of multimaster
arbitration). This block is capable of operating at speeds of up to
1 Mbps (Fast Mode Plus) and has flexible buffering options to
reduce interrupt overhead and latency for the CPU. The FIFO
mode is available in all channels and is very useful in the
absence of DMA.
The I2C peripheral is compatible with the I2C Standard-mode,
Fast-mode, and Fast-Mode Plus devices as defined in the NXP
I2C-bus specification and user manual (UM10204). The I2C bus
I/O is implemented with GPIO in open-drain modes. The I2C bus
uses open-drain drivers for clock and data with pull-up resistors
on the bus for clock and data connected to all nodes. The
required Rise and Fall times for different I2C speeds are
guaranteed by using appropriate pull-up resistor values
depending on VDD, Bus Capacitance, and resistor tolerance.
For detailed information on how to calculate the optimum pull-up
resistor value for your design, refer to the UM10204 I2C bus
specification and user manual (the latest revision is available at
www.nxp.com).
PSoC 4100 is not completely compliant with the I2C spec in the
following respects:
GPIO cells are not overvoltage-tolerant and, therefore, cannot
be hot-swapped or powered up independently of the rest of the
I2C system.
Fast-mode Plus has an IOL specification of 20 mA at a VOL of
0.4 V. The GPIO cells can sink a maximum of 8-mA IOL with a
VOL maximum of 0.6 V.
Fast-mode and Fast-mode Plus specify minimum Fall times,
which are not met with the GPIO cell; Slow strong mode can
help meet this spec depending on the Bus Load.
When the SCB is an I2C master, it interposes an IDLE state
between NACK and Repeated Start; the I2C spec defines Bus
free as following a Stop condition so other Active Masters do
not intervene but a Master that has just become activated may
start an Arbitration cycle.
When the SCB is in I2C slave mode, and Address Match on
External Clock is enabled (EC_AM = 1) along with operation in
the internally clocked mode (EC_OP = 0), then its I2C address
must be even.
UART Mode: This is a full-feature UART operating at up to
1 Mbps. It supports automotive single-wire interface (LIN),
infrared interface (IrDA), and SmartCard (ISO7816) protocols, all
of which are minor variants of the basic UART protocol. In
addition, it supports the 9-bit multiprocessor mode that allows
addressing of peripherals connected over common RX and TX
lines. Common UART functions such as parity error, break
detect, and frame error are supported. An 8-deep FIFO allows
much greater CPU service latencies to be tolerated.
SPI Mode: The SPI mode supports full Motorola SPI, TI SSP
(essentially adds a start pulse used to synchronize SPI Codecs),
and National Microwire (half-duplex form of SPI). The SPI block
can use the FIFO.
Document Number: 001-87220 Rev. *J
Page 7 of 43

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]