DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

AD9750 Просмотр технического описания (PDF) - Analog Devices

Номер в каталоге
Компоненты Описание
производитель
AD9750 Datasheet PDF : 22 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
POWER DISSIPATION
The power dissipation, PD, of the AD9750 is dependent on
several factors which include: (1) AVDD and DVDD, the
power supply voltages; (2) IOUTFS, the full-scale current output;
(3) fCLOCK, the update rate; (4) and the reconstructed digital
input waveform. The power dissipation is directly proportional
to the analog supply current, IAVDD, and the digital supply cur-
rent, IDVDD. IAVDD is directly proportional to IOUTFS as shown in
Figure 25 and is insensitive to fCLOCK.
Conversely, IDVDD is dependent on both the digital input wave-
form, fCLOCK, and digital supply DVDD. Figures 26 and 27
show IDVDD as a function of full-scale sine wave output ratios
(fOUT/fCLOCK) for various update rates with DVDD = 5 V and
DVDD = 3 V, respectively. Note, how IDVDD is reduced by more
than a factor of 2 when DVDD is reduced from 5 V to 3 V.
35
30
25
20
15
10
5
2
4
6
8 10 12 14 16 18 20
IOUTFS – mA
Figure 25. IAVDD vs. IOUTFS
18
125MSPS
16
14
100MSPS
12
10
8
50MSPS
6
4
2
0
0.01
0.1
RATIO (fCLOCK/fOUT)
25MSPS
5MSPS
1
Figure 26. IDVDD vs. Ratio @ DVDD = 5 V
AD9750
8
125MSPS
6
100MSPS
4
50MSPS
2
25MSPS
0
0.01
0.1
RATIO (fCLOCK/fOUT)
5MSPS
1
Figure 27. IDVDD vs. Ratio @ DVDD = 3 V
APPLYING THE AD9750
OUTPUT CONFIGURATIONS
The following sections illustrate some typical output configura-
tions for the AD9750. Unless otherwise noted, it is assumed
that IOUTFS is set to a nominal 20 mA. For applications requir-
ing the optimum dynamic performance, a differential output
configuration is suggested. A differential output configuration
may consist of either an RF transformer or a differential op amp
configuration. The transformer configuration provides the opti-
mum high frequency performance and is recommended for any
application allowing for ac coupling. The differential op amp
configuration is suitable for applications requiring dc coupling, a
bipolar output, signal gain and/or level shifting.
A single-ended output is suitable for applications requiring a
unipolar voltage output. A positive unipolar output voltage will
result if IOUTA and/or IOUTB is connected to an appropri-
ately sized load resistor, RLOAD, referred to ACOM. This con-
figuration may be more suitable for a single-supply system
requiring a dc coupled, ground referred output voltage. Alterna-
tively, an amplifier could be configured as an I-V converter thus
converting IOUTA or IOUTB into a negative unipolar voltage.
This configuration provides the best dc linearity since IOUTA
or IOUTB is maintained at a virtual ground. Note, IOUTA
provides slightly better performance than IOUTB.
DIFFERENTIAL COUPLING USING A TRANSFORMER
An RF transformer can be used to perform a differential-to-
single-ended signal conversion as shown in Figure 28. A
differentially coupled transformer output provides the optimum
distortion performance for output signals whose spectral content
lies within the transformer’s passband. An RF transformer such
as the Mini-Circuits T1-1T provides excellent rejection of
common-mode distortion (i.e., even-order harmonics) and noise
over a wide frequency range. It also provides electrical isolation
and the ability to deliver twice the power to the load. Trans-
formers with different impedance ratios may also be used for
impedance matching purposes. Note that the transformer
provides ac coupling only.
REV. 0
–13–

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]