DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MICRF011 Просмотр технического описания (PDF) - Micrel

Номер в каталоге
Компоненты Описание
производитель
MICRF011 Datasheet PDF : 11 Pages
1 2 3 4 5 6 7 8 9 10
MICRF011
QwikRadio tm
Micrel
3. Selecting CAGC Capacitor
Selection of CAGC is dictated by minimizing the ripple on
the AGC control voltage, by using a sufficiently large
capacitor. It is Micrel’s experience that CAGC should be in
the vicinity of 0.47µF to 4.7µF. Large capacitor values
should be carefully considered, as this determines the time
required for the AGC control voltage to settle from a
completely discharged condition. AGC settling time from a
completely discharged (0-volt) state is given approximately
by equation (6):
capacitor CAGC. The attack current is nominally 15µA,
while the decay current is a 1/10th scaling of this,
approximately 1.5µA. Signal gain of the RF/IF strip inside
the IC diminishes as the voltage on CAGC decreases. By
simply adding a capacitor to CAGC pin, the attack/decay
time constant ratio is fixed at 1:10. Further discussion on
setting the attack time constant is found in “Application Note
22, MICRF001 Theory of Operation”, section 6.5.
Modification of the attack/decay ratio is possible by adding
resistance from CAGC pin either to VDDBB or VSSBB, as
desired.
T = (1.333 * CAGC) – 0.44
(6)
4. DO Pin
where CAGC is in microfarads, and T is in seconds.
I/O Pin Interface Circuitry
Interface circuitry for the various I/O pins of the MICRF011 is
shown in Figures 1 through 6. Specific information
regarding each of these circuits is discussed in the following
sub-paragraphs. Not shown are ESD protection diodes
which are applied to all input and output pins.
1. ANT Pin
The ANT pin is internally AC-coupled via a 3pF capacitor, to
The output stage for the Data Comparator (DO pin) is shown
in Figure 4. The output is a 10µA push-10µA pull, switched
current stage. Such an output stage is capable of driving
CMOS-type loads.
An external buffer-driver is
recommended for driving high capacitance loads.
5. REFOSC Pin
The REFOSC input circuit is shown in Figure 5. Input
impedance is quite high (200k). This is a Colpitts
oscillator, with internal 30pF capacitors. This input is
intended to work with standard ceramic resonators,
connected from this pin to VSSBB, although a crystal may
be used instead, where greater frequency accuracy is
required. The resonators should not contain integral
capacitors, since these capacitors are contained inside the
IC. Externally applied signals should be AC-coupled,
amplitude limited to approximately 0.5Vpp. The nominal DC
bias voltage on this pin is 1.4V.
6. Control Inputs (SEL0, SEL1, SWEN)
Figure 1 ANT Pin
an RF N-channel MOSFET, as shown in Figure 1.
Impedance on this pin to VSS is quite high at low
frequencies, and decreases as frequency increases. In the
UHF frequency range, the device input can be modeled as
6.3kin parallel with 2pF (pin capacitance) shunt to
VSSRF.
Control input circuitry is shown in Figure 6. The standard
input is a logic inverter constructed with minimum geometry
MOSFETs (Q2, Q3). P-channel MOSFET Q1 is a large
channel length device which functions essentially as a
“weak” pullup to VDDBB. Typical pullup current is 5µA,
leading to an impedance to the VDDBB supply of typically
1M.
2. CTH Pin
Figure 2 illustrates the CTH pin interface circuit. CTH pin is
driven from a P-channel MOSFET source-follower biased
with approximately 10µA of bias current. Transmission
gates TG1 and TG2 isolate the 6.9pF capacitor. Internal
control signals PHI1/PHI2 are related in a manner such that
the impedance across the transmission gates looks like a
“resistance” of approximately 118k. The DC potential on
the CTH pin is approximately 1.6V.
3. CAGC Pin
Figure 3 illustrates the CAGC pin interface circuit. The AGC
control voltage is developed as an integrated current into a
December 1998b
99
MICRF011

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]