DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADXL337 Просмотр технического описания (PDF) - Analog Devices

Номер в каталоге
Компоненты Описание
производитель
ADXL337 Datasheet PDF : 16 Pages
First Prev 11 12 13 14 15 16
ADXL337
APPLICATIONS INFORMATION
POWER SUPPLY DECOUPLING
For most applications, a single 0.1 μF capacitor, CDC, placed
close to the ADXL337 supply pins adequately decouples the
accelerometer from noise on the power supply. However, in
applications where noise is present at the 50 kHz internal clock
frequency (or any harmonic thereof), additional care in power
supply bypassing is required because this noise can cause errors
in acceleration measurement. If additional decoupling is needed, a
100 Ω (or smaller) resistor or ferrite bead can be inserted in the
supply line. Additionally, a larger bulk bypass capacitor (1 μF or
greater) can be added in parallel to CDC. Ensure that the connection
from the ADXL337 ground to the power supply ground is low
impedance because noise transmitted through ground has a
similar effect as noise transmitted through VS.
SETTING THE BANDWIDTH USING CX, CY, AND CZ
The ADXL337 has provisions for band limiting the XOUT, YOUT,
and ZOUT pins. Capacitors must be added at these pins to implement
low-pass filtering for antialiasing and noise reduction. The
equation for the 3 dB bandwidth is
f−3 dB = 1/(2π(32 kΩ) × C(X, Y, Z))
or more simply
f–3 dB = 5 μF/C(X, Y, Z)
The tolerance of the internal resistor (RFILT) typically varies as
much as ±15% of its nominal value (32 kΩ), and the bandwidth
varies accordingly. A minimum capacitance of 0.0047 μF for CX,
CY, and CZ is recommended in all cases.
Table 4. Filter Capacitor Selection, CX, CY, and CZ
Bandwidth (Hz)
Capacitor (μF)
1
4.7
10
0.47
50
0.10
100
0.05
200
0.027
500
0.01
SELF TEST
The ST pin controls the self test feature. When this pin is set to
VS, an electrostatic force is exerted on the accelerometer beam.
The resulting movement of the beam allows the user to test if
the accelerometer is functional. The typical change in output is
−1.08 g (corresponding to −325 mV) in the X-axis, +1.08 g (or
+325 mV) on the Y-axis, and +1.83 mg (or +550 mV) on the
Z-axis. This ST pin can be left open circuit or connected to
common (GND) in normal use.
Never expose the ST pin to voltages greater than VS + 0.3 V. If
this cannot be guaranteed due to the system design (for instance, if
there are multiple supply voltages), then a low VF clamping
diode between ST and VS is recommended.
DESIGN TRADE-OFFS FOR SELECTING FILTER
CHARACTERISTICS: THE NOISE/BW TRADE-OFF
The selected accelerometer bandwidth ultimately determines
the measurement resolution (smallest detectable acceleration).
Filtering can be used to lower the noise floor to improve the
resolution of the accelerometer. Resolution is dependent on the
analog filter bandwidth at XOUT, YOUT, and ZOUT.
The output of the ADXL337 has a typical bandwidth of greater
than 500 Hz. The user must filter the signal at this point to limit
aliasing errors. The analog bandwidth must be no more than half
the analog-to-digital sampling frequency to minimize aliasing.
The analog bandwidth can be decreased further to reduce noise
and improve resolution.
The ADXL337 noise has the characteristics of white Gaussian
noise, which contributes equally at all frequencies and is described
in terms of μg/√Hz (the noise is proportional to the square root
of the accelerometer bandwidth). The user should limit bandwidth
to the lowest frequency needed by the application to maximize
the resolution and dynamic range of the accelerometer.
With the single-pole, roll-off characteristic, the typical noise of
the ADXL337 is determined by
rms Noise = Noise Density × ( BW ×1.6 )
It is often useful to know the peak value of the noise. Peak-to-peak
noise can only be estimated by statistical methods. Table 5 is useful
for estimating the probabilities of exceeding various peak values,
given the rms value.
Table 5. Estimation of Peak-to-Peak Noise
Peak-to-Peak Value
Percent of Time that Noise Exceeds
Nominal Peak-to-Peak Value
2 × rms
32
4 × rms
4.6
6 × rms
0.27
8 × rms
0.006
Rev. 0 | Page 11 of 16

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]