DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADSP-BF537 Просмотр технического описания (PDF) - Analog Devices

Номер в каталоге
Компоненты Описание
производитель
ADSP-BF537
ADI
Analog Devices ADI
ADSP-BF537 Datasheet PDF : 68 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
CLKOUT
CLKBUF
BLACKFIN
TO PLL CIRCUITRY
EN
EN
CLKIN
330*
XTAL
FOR OVERTONE
OPERATION ONLY:
18pF*
18pF*
NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED
DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE
ANALYZE CAREFULLY.
Figure 6. External Crystal Connections
Because of the default 10x PLL multiplier, providing a 50 MHz
CLKIN exceeds the recommended operating conditions of the
lower speed grades. Because of this restriction, a 50 MHz RMII
PHY cannot be clocked directly from the CLKBUF pin. Either
provide a separate 50 MHz clock source, or use an RMII PHY
with 25 MHz clock input options. The CLKBUF output is active
by default and can be disabled using the VR_CTL register for
power savings.
The Blackfin core runs at a different clock rate than the on-chip
peripherals. As shown in Figure 7, the core clock (CCLK) and
system peripheral clock (SCLK) are derived from the input
clock (CLKIN) signal. An on-chip PLL is capable of multiplying
the CLKIN signal by a programmable 0.5× to 64× multiplication
factor (bounded by specified minimum and maximum VCO
frequencies). The default multiplier is 10×, but it can be modi-
fied by a software instruction sequence in the PLL_CTL register.
On-the-fly CCLK and SCLK frequency changes can be effected
by simply writing to the PLL_DIV register. Whereas the maxi-
mum allowed CCLK and SCLK rates depend on the applied
voltages VDDINT and VDDEXT, the VCO is always permitted to run
up to the frequency specified by the part’s speed grade. The
CLKOUT pin reflects the SCLK frequency to the off-chip world.
It belongs to the SDRAM interface, but it functions as reference
signal in other timing specifications as well. While active by
default, it can be disabled using the EBIU_SDGCTL and
EBIU_AMGCTL registers.
All on-chip peripherals are clocked by the system clock (SCLK).
The system clock frequency is programmable by means of the
SSEL3–0 bits of the PLL_DIV register. The values programmed
into the SSEL fields define a divide ratio between the PLL output
(VCO) and the system clock. SCLK divider values are 1 through
15. Table 6 illustrates typical system clock ratios.
ADSP-BF534/ADSP-BF536/ADSP-BF537
“FINE” ADJUSTMENT
REQUIRES PLL SEQUENCING
“COURSE” ADJUSTMENT
ON THE FLY
CLKI N
PLL
0.5ϫ - 64ϫ
، 1, 2, 4, 8
VCO
، 1 TO 15
CCLK
SCLK
SCLK CCLK
SCLK 133MHz
Figure 7. Frequency Modification Methods
Note that the divisor ratio must be chosen to limit the system
clock frequency to its maximum of fSCLK. The SSEL value can be
changed dynamically without any PLL lock latencies by writing
the appropriate values to the PLL divisor register (PLL_DIV).
Table 6. Example System Clock Ratios
Signal Name
SSEL3–0
0001
0110
1010
Example Frequency Ratios
Divider Ratio (MHz)
VCO/SCLK VCO
SCLK
1:1
100
100
6:1
300
50
10:1
500
50
The core clock (CCLK) frequency can also be dynamically
changed by means of the CSEL1–0 bits of the PLL_DIV register.
Supported CCLK divider ratios are 1, 2, 4, and 8, as shown in
Table 7. This programmable core clock capability is useful for
fast core frequency modifications.
Table 7. Core Clock Ratios
Signal Name
CSEL1–0
00
01
10
11
Example Frequency Ratios
Divider Ratio (MHz)
VCO/CCLK VCO
CCLK
1:1
300
300
2:1
300
150
4:1
500
125
8:1
200
25
The maximum CCLK frequency not only depends on the part’s
speed grade (see Ordering Guide on Page 66), it also depends on
the applied VDDINT voltage. See Table 12 and Table 13 for details.
The maximal system clock rate (SCLK) depends on the chip
package and the applied VDDEXT voltage (see Table 16).
Rev. B | Page 15 of 68 | July 2006

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]