DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

HI5905EVAL2 Просмотр технического описания (PDF) - Intersil

Номер в каталоге
Компоненты Описание
производитель
HI5905EVAL2
Intersil
Intersil Intersil
HI5905EVAL2 Datasheet PDF : 11 Pages
1 2 3 4 5 6 7 8 9 10
HI5905
Supply and Ground Considerations
The HI5905 has separate analog and digital supply and
ground pins to keep digital noise out of the analog signal
path. The part should be mounted on a board that provides
separate low impedance connections for the analog and
digital supplies and grounds. For best performance, the
supplies to the HI5905 should be driven by clean, linear
regulated supplies. The board should also have good high
frequency decoupling capacitors mounted as close as
possible to the converter. If the part is powered off a single
supply then the analog supply and ground pins should be
isolated by ferrite beads from the digital supply and ground
pins.
Refer to the Application Note AN9214, “Using Intersil High
Speed A/D Converters” for additional considerations when
using high speed converters.
Static Performance Definitions
Offset Error (VOS)
The midscale code transition should occur at a level 1/4 LSB
above half-scale. Offset is defined as the deviation of the
actual code transition from this point.
Full-Scale Error (FSE)
The last code transition should occur for an analog input that
is 3/4 LSB below positive full-scale with the offset error
removed. Full-scale error is defined as the deviation of the
actual code transition from this point.
Differential Linearity Error (DNL)
DNL is the worst case deviation of a code width from the
ideal value of 1 LSB.
Integral Linearity Error (INL)
INL is the worst case deviation of a code center from a best
fit straight line calculated from the measured data.
Power Supply Rejection Ratio (PSRR)
Each of the power supplies are moved plus and minus 5%
and the shift in the offset and gain error (in LSBs) is noted.
Dynamic Performance Definitions
Fast Fourier Transform (FFT) techniques are used to evaluate
the dynamic performance of the HI5905. A low distortion sine
wave is applied to the input, it is coherently sampled, and the
output is stored in RAM. The data is then transformed into the
frequency domain with an FFT and analyzed to evaluate the
dynamic performance of the A/D. The sine wave input to the
part is -0.5dB down from full-scale for all these tests. SNR and
SINAD are quoted in dB. The distortion numbers are quoted in
dBc (decibels with respect to carrier) and DO NOT include any
correction factors for normalizing to full scale.
Signal-to-Noise Ratio (SNR)
SNR is the measured RMS signal to RMS noise at a
specified input and sampling frequency. The noise is the
RMS sum of all of the spectral components except the
fundamental and the first five harmonics.
Signal-to-Noise + Distortion Ratio (SINAD)
SINAD is the measured RMS signal to RMS sum of all
other spectral components below the Nyquist frequency,
fS/2, excluding DC.
Effective Number Of Bits (ENOB)
The effective number of bits (ENOB) is calculated from the
SINAD data by:
ENOB = (SINAD + VCORR-1.76)/6.02
where: VCORR = 0.5dB (Typical)
VCORR adjusts the ENOB for the amount the input is below
fullscale.
Total Harmonic Distortion (THD)
THD is the ratio of the RMS sum of the first 5 harmonic
components to the RMS value of the fundamental input
signal.
2nd and 3rd Harmonic Distortion
This is the ratio of the RMS value of the applicable
harmonic component to the RMS value of the fundamental
input signal.
Spurious Free Dynamic Range (SFDR)
SFDR is the ratio of the fundamental RMS amplitude to the
RMS amplitude of the next largest spur or spectral
component (excluding the first 5 harmonic components) in
the spectrum below fS/2.
Intermodulation Distortion (IMD)
Nonlinearities in the signal path will tend to generate
intermodulation products when two tones, f1 and f2 , are
present at the inputs. The ratio of the measured signal to
the distortion terms is calculated. The terms included in the
calculation are (f1 + f2), (f1 - f2), (2f1), (2f2), (2f1 + f2), (2f1 -
f2), (f1 + 2f2), (f1 - 2f2). The ADC is tested with each tone
6dB below full scale.
Transient Response
Transient response is measured by providing a fullscale
transition to the analog input of the ADC and measuring the
number of cycles it takes for the output code to settle within
14-bit accuracy.
Over-Voltage Recovery
Over-voltage Recovery is measured by providing a fullscale
transition to the analog input of the ADC which overdrives
the input by 200mV, and measuring the number of cycles it
takes for the output code to settle within 14-bit accuracy.
10

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]