DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADM1026JST-REEL7 Просмотр технического описания (PDF) - ON Semiconductor

Номер в каталоге
Компоненты Описание
производитель
ADM1026JST-REEL7
ON-Semiconductor
ON Semiconductor ON-Semiconductor
ADM1026JST-REEL7 Datasheet PDF : 55 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
ADM1026
2. Data is sent over the serial bus in sequences of nine
clock pulses, 8 bits of data followed by an
acknowledge bit from the slave device. Data
transitions on the data line must occur during the
low period of the clock signal and remain stable
during the high period, because a lowtohigh
transition when the clock is high may be interpreted
as a stop signal.
If the operation is a write operation, the first data
byte after the slave address is a command byte.
This tells the slave device what to expect next. It
may be an instruction telling the slave device to
expect a block write, or it may simply be a register
address that tells the slave where subsequent data is
to be written.
Because data can flow in only one direction as
defined by the R/W bit, it is not possible to send a
command to a slave device during a read operation.
1
91
SCL
Before doing a read operation, it may first be
necessary to do a write operation to tell the slave
what type of read operation to expect and/or the
address from which data is to be read.
3. When all data bytes have been read or written, stop
conditions are established. In write mode, the master
pulls the data line high during the 10th clock pulse
to assert a stop condition. In read mode, the master
device releases the SDA line during the low period
before the ninth clock pulse, but the slave device
does not pull it low (called No Acknowledge). The
master takes the data line low during the low period
before the 10th clock pulse, then high during the
10th clock pulse to assert a stop condition.
*If it is required to perform several read or write operations in
succession, the master can send a repeat start condition
instead of a stop condition to begin a new operation.
9
SDA
0
1
START BY
MASTER
0
1
1 A1 A0 R/W
D7 D6 D5 D4 D3 D2 D1 D0
FRAME 1
SLAVE ADDRESS
ACK. BY
SLAVE
FRAME 2
COMMAND CODE
ACK. BY
SLAVE
1
9
1
9
SCL
(CONTINUED)
SDA
(CONTINUED)
1
SCL
D7 D6 D5 D4 D3 D2 D1 D0
FRAME 3
DATA BYTE
ACK. BY
SLAVE
D7 D 6 D5 D4 D3 D2 D1 D0
FRAME N
DATA BYTE
ACK. BY STOP BY
SLAVE MASTER
Figure 16. General SMBus Write Timing Diagram
91
9
SDA
0
START BY
MASTER
1
0
1
1
A1 A0 R/W
D7 D6 D5 D4 D3 D2 D1 D0
FRAME 1
SLAVE ADDRESS
ACK. BY
SLAVE
FRAME 2
DATA BYTE
ACK. BY
MASTER
1
9
1
9
SCL
(CONTINUED)
SDA
(CONTINUED)
D7 D6 D5 D4 D3 D2 D1 D0
FRAME 3
DATA BYTE
ACK. BY
MASTER
D7 D 6 D5 D4 D3 D2 D1 D0
FRAME N
DATA BYTE
NO ACK.
STOP BY
MASTER
Figure 17. General SMBus Read Timing Diagram
SMBus Protocols for RAM and EEPROM
The ADM1026 contains volatile registers (RAM) and
nonvolatile EEPROM. RAM occupies Addresses 00h to
6Fh, while EEPROM occupies Addresses 8000h to 9FFFh.
Data can be written to and read from both RAM and
EEPROM as single data bytes and as block (sequential) read
or write operations of 32 data bytes, the maximum block size
allowed by the SMBus specification.
http://onsemi.com
12

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]