DATA SHEET

74ALVCH32501 36-bit universal bus transceiver with direction pin; 3-state

PHILIPS

36-bit universal bus transceiver with direction pin; 3-state

FEATURES

- 3-state non-inverting outputs for bus oriented applications
- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard no. 8-1A
- Current drive $\pm 24 \mathrm{~mA}$ at 3.0 V
- Universal bus transceiver with D-type latches and D-type flip-flops capable of operating in transparent, latched or clocked mode
- CMOS low power consumption
- Direct interface with TTL levels
- All inputs have bus-hold circuitry
- Output drive capability 50Ω transmission lines at $85^{\circ} \mathrm{C}$
- Plastic fine-pitch ball grid array package.

DESCRIPTION

The 74ALVCH32501 is a high-performance CMOS product designed for V_{Cc} operation at 2.5 V and 3.3 V .
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The 74ALVCH32501 can be used as two 18-bit transceivers or one 36-bit transceiver featuring non-inverting 3 -state bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable ($\mathrm{OE}_{\mathrm{AB}}$ and $\mathrm{OE}_{\mathrm{BA}}$), latch enable ($L E E_{A B}$ and $L E_{B A}$), and clock inputs ($\mathrm{CP}_{\mathrm{AB}}$ and $\mathrm{CP}_{\mathrm{BA}}$).
For A -to- B data flow, the device operates in the transparent mode when $L E_{A B}$ is HIGH . When input $L E_{A B}$ is LOW, the A data is latched if input $\mathrm{CP}_{\mathrm{AB}}$ is held at a HIGH or LOW level. If input $L E_{A B}$ is LOW, the A data is stored in the latch/flip-flop on the LOW-to-HIGH transition of $\mathrm{CP}_{\mathrm{AB}}$. When input $\mathrm{OE}_{\mathrm{AB}}$ is HIGH , the outputs are active. When input $\mathrm{OE}_{\mathrm{AB}}$ is LOW, the outputs are in the high-impedance state.

Data flow for B-to-A is similar to that of $\mathrm{A}-\mathrm{to}-\mathrm{B}$, but uses inputs $\overline{\mathrm{OE}}_{\mathrm{BA}}, L E_{\mathrm{BA}}$ and $\mathrm{CP}_{\mathrm{BA}}$. The output enables are complimentary $\left(\mathrm{OE}_{\mathrm{AB}}\right.$ is active HIGH, and $\overline{\mathrm{OE}}_{\mathrm{BA}}$ is active LOW).

To ensure the high-impedance state during power-up or power-down, pin $\overline{\mathrm{OE}}_{\mathrm{BA}}$ should be tied to V_{CC} through a pull-up resistor and pin $\mathrm{OE}_{\mathrm{AB}}$ should be tied to GND through a pull-down resistor. The minimum value of the resistor is determined by the current-sinking or current-sourcing capability of the driver.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYP.	UNIT
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay A_{n} to $\mathrm{B}_{\mathrm{n}} ; \mathrm{B}_{\mathrm{n}}$ to A_{n}	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	2.8	ns
	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	3.0	ns	
C_{I}	input capacitance		4.0	pF
$\mathrm{C}_{/ / \mathrm{O}}$	input/output capacitance		8.0	pF
C_{PD}	power dissipation capacitance per latch	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}} ;$ note 1 outputs enabled outputs disabled	21	pF
		3		

Note

1. $C_{P D}$ is used to determine the dynamic power dissipation $\left(P_{D}\right.$ in $\left.\mu \mathrm{W}\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$f_{i}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.

36-bit universal bus transceiver with direction pin;

 3-state
FUNCTION TABLE

See notes 1 and 2 .

INPUT				INTERNAL REGISTERS	OUTPUT	OPERATING MODE
$\mathrm{nOE}_{\text {AB }}$	$n L E_{\text {AB }}$	$n C P_{\text {AB }}$	$n A_{n}$		$n B_{n}$	
L	H	X	X	X	Z	disabled
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \downarrow \\ & \downarrow \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	h	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	disabled; latch data
L	L	H or L	X	NC	Z	disabled; hold data
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	h	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{Z} \end{aligned}$	disabled; clock data
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	transparent
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \downarrow \\ & \downarrow \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	h	$\begin{gathered} \hline \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	latch data and display
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$	$\begin{aligned} & \mathrm{h} \\ & \mathrm{l} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	clock data and display
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	H or L Hor L	$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \hline \mathrm{H} \\ \mathrm{~L} \end{gathered}$	hold data and display

Notes

1. A-to-B data flow is shown; B-to-A flow is similar but uses $n \bar{O} E_{B A}, n L E_{B A}$ and $n C P_{B A}$.
2. $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$h=$ HIGH voltage level on set-up time prior to the enable or clock transition;
L = LOW voltage level;
I = LOW voltage level on set-up time prior to the enable or clock transition;
NC = no change;
X = don't care;
$\uparrow=$ LOW-to-HIGH enable or clock transition;
$\downarrow=$ HIGH-to-LOW enable or clock transition;
$\mathrm{Z}=$ high impedance OFF-state.

36-bit universal bus transceiver with direction pin;

3-state

ORDERING INFORMATION

TYPE NUMBER	PACKAGE				
	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	114	LFBGA114	plastic	SOT537-1

PINNING

SYMBOL	
$n A_{n}$	data inputs
nB_{n}	data outputs
GND	ground (0 V)
V_{CC}	DC supply voltage
nOE	
nOB	output enable inputs A to B (active HIGH)
$\mathrm{nLE}_{\mathrm{BA}}$	output enable inputs B to A (active LOW)
$\mathrm{nLE}_{\mathrm{BA}}$	latch enable inputs A to B
nCP	latch enable inputs B to A
nCP	clock input A to B

Fig. 1 Pin configuration.

36-bit universal bus transceiver with direction pin;

 3-state

Fig. 2 Logic symbol.

36-bit universal bus transceiver with direction pin;

 3-state74ALVCH32501

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage	2.5 V range (for maximum speed performance at 30 pF output load)	2.3	2.7	V
		3.3 V range (for maximum speed performance at 50 pF output load $)$	3.0	3.6	V
	input voltage		0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{O}	output voltage	output HIGH or LOW state	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall time ratios $(\Delta t / \Delta \mathrm{V})$	$\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+4.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage	for control pins; note 1	-0.5	+4.6	V
		for data input pins; note 1	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-	-50	mA
I_{OK}	output clamping diode current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V} ;$ note 1	-	50	mA
$\mathrm{~V}_{\mathrm{O}}$	output voltage	see note 1	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
I_{O}	output sink current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	-	-50	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	V_{CC} or GND current		-	± 100	mA
$\mathrm{~T}_{\text {Stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ;$ note 2	-	1000	mW

Notes

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above $55^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $1.8 \mathrm{~mW} / \mathrm{K}$.

36-bit universal bus transceiver with direction pin; 3-state

DC CHARACTERISTICS

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIO	NS	MIN.	TYP. ${ }^{(1)}$	MAX	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		2.3 to 2.7	1.7	1.2	-	V
			2.7 to 3.6	2.0	1.5	-	V
V_{IL}	LOW-level input voltage		2.3 to 2.7	-	1.2	0.7	V
			2.7 to 3.6	-	1.5	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}} \mathrm{~V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-24 \\ & \end{aligned}$	$\begin{aligned} & 2.3 \text { to } 3.6 \\ & 2.3 \\ & 2.3 \\ & 2.7 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}-0.2 \\ & V_{C C}-0.3 \\ & V_{C C}-0.6 \\ & V_{C C}-0.5 \\ & V_{C C}-0.6 \\ & V_{C C}-1.0 \end{aligned}$	$\begin{aligned} & V_{C C} \\ & V_{C C}-0.08 \\ & V_{C C}-0.26 \\ & V_{C C}-0.14 \\ & V_{C C}-0.09 \\ & V_{C C}-0.28 \end{aligned}$		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}} & =6 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}} & =24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.3 \text { to } 3.6 \\ & 2.3 \\ & 2.3 \\ & 2.7 \\ & 3.0 \end{aligned}$		$\begin{aligned} & \text { GND } \\ & 0.07 \\ & 0.15 \\ & 0.14 \\ & 0.27 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.40 \\ & 0.70 \\ & 0.40 \\ & 0.55 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	2.3 to 3.6	-	± 0.1	± 5	$\mu \mathrm{A}$
I_{Oz}	3-state output OFF-state current	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D ; \text { note } 2 \end{aligned}$	2.3 to 3.6	-	0.1	± 10	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \\ & \hline \end{aligned}$	2.3 to 3.6	-	0.4	80	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current given per data I/O pin with bus-hold	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	2.7 to 3.6	-	150	750	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{BHL}}$	bus-hold LOW sustaining current	$\mathrm{V}_{1}=0.7 \mathrm{~V}$; note 3	2.3	45	-	-	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=0.8 \mathrm{~V}$; note 3	3.0	75	150	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHH }}$	bus-hold HIGH sustaining current	$\mathrm{V}_{1}=1.7 \mathrm{~V}$; note 3	2.3	-45	-	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {I }}=2.0 \mathrm{~V}$; note 3	3.0	-75	-175	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHLO }}$	bus-hold LOW overdrive current	note 3	3.6	500	-	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHHO }}$	bus-hold HIGH overdrive current	note 3	3.6	-500	-	-	$\mu \mathrm{A}$

Notes

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. For I/O ports, the parameter I_{OZ} includes the input leakage current.
3. Valid for data inputs of bus-hold parts.

36-bit universal bus transceiver with direction pin; 3-state

AC CHARACTERISTICS

$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; GND $=0 \mathrm{~V}$

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	C_{L}				
$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 . 0} \mathbf{n s} ;$ note 1							
$\mathrm{t}_{\text {PHL }} / \mathrm{tPLH}$	propagation delay $n A_{n}$ to $n B_{n} ; n B_{n}$ to $n A_{n}$ $n L E_{B A}$ to $n A_{n} ; n L E_{A B}$ to $n B_{n}$ $n C P_{B A}$ to $n A_{n} ; n C P_{A B}$ to $n B_{n}$	see Figs 4 and 8 see Figs 5 and 8 see Figs 5 and 8	$\begin{aligned} & 30 \mathrm{pF} \\ & 30 \mathrm{pF} \\ & 30 \mathrm{pF} \end{aligned}$	$\begin{array}{\|l\|} \hline 1.0 \\ 1.1 \\ 1.0 \end{array}$	$\begin{array}{\|l\|} \hline 2.8 \\ 3.5 \\ 3.3 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.1 \\ 6.1 \\ 6.1 \end{array}$	ns ns ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\mathrm{nOE}_{A B}$ to nB_{n}	see Figs 6 and 8	30 pF	1.0	2.5	5.8	ns
	3-state output enable time $n \overline{O E}_{B A}$ to $n A_{n}$	see Figs 6 and 8	30 pF	1.3	2.8	6.3	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $n O E_{\text {AB }}$ to nB_{n}	see Figs 6 and 8	30 pF	1.5	2.5	6.2	ns
	3-state output disable time n $\overline{O E}_{B A}$ to $n A_{n}$	see Figs 6 and 8	30 pF	1.3	2.5	5.3	ns
tw	$n L E_{A B}$ or $n L E_{B A}$ pulse width HIGH	see Figs 5 and 8	30 pF	3.3	0.8	-	ns
	$\mathrm{nCP}_{\mathrm{AB}}$ or $\mathrm{nCP}_{\mathrm{BA}}$ pulse width HIGH or LOW	see Figs 5 and 8	30 pF	3.3	2.0	-	ns
$\mathrm{t}_{\text {su }}$	set-up time $n A_{n}$ before $n C P_{A B} \uparrow$ or $n B_{n}$ before $n C P_{B A} \uparrow$	see Figs 7 and 8	30 pF	1.7	0.1	-	ns
	set-up time CP HIGH or LOW $n A_{n}$ before $n L E_{A B} \downarrow$ or $n B_{n}$ before $n L E_{B A} \downarrow$	see Figs 7 and 8	30 pF	1.1	0.1	-	ns
t_{h}	hold time $n A_{n}$ after $n C P_{A B} \uparrow$ or $n B_{n}$ after $n C P_{B A} \uparrow$	see Figs 7 and 8	30 pF	1.7	0.3	-	ns
	hold time CP HIGH or LOW $n A_{n}$ after $n L E_{A B} \downarrow$ or $n B_{n}$ after $n L E_{B A} \downarrow$	see Figs 7 and 8	30 pF	1.6	0.3	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency	see Figs 5 and 8	30 pF	150	330	-	MHz
$\mathrm{V}_{\mathrm{CC}}=\mathbf{2 . 7} \mathrm{V}$; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 . 5} \mathbf{n s} ;$ note 2							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n A_{n}$ to $n B_{n} ; n B_{n}$ to $n A_{n}$ $n L E_{B A}$ to $n A_{n} ; n L E_{A B}$ to $n B_{n}$ $n C P_{B A}$ to $n A_{n} ; n C P_{A B}$ to $n B_{n}$	see Figs 4 and 8 see Figs 5 and 8 see Figs 5 and 8	$\begin{aligned} & 50 \mathrm{pF} \\ & 50 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	\|-	$\begin{array}{\|l\|} \hline 3.0 \\ 3.6 \\ 3.4 \end{array}$	$\begin{array}{\|l\|} \hline 4.6 \\ 5.3 \\ 5.6 \\ \hline \end{array}$	$\begin{array}{\|l} \text { ns } \\ \text { ns } \\ \text { ns } \end{array}$
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\mathrm{nOE}_{\text {AB }}$ to nB_{n}	see Figs 6 and 8	50 pF	-	2.7	5.3	ns
	3-state output enable time $n \overline{O E}_{B A}$ to $n A_{n}$	see Figs 6 and 8	50 pF	-	3.3	6.0	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3-state output disable time $\mathrm{nOE}_{\text {AB }}$ to nB_{n}	see Figs 6 and 8	50 pF	-	3.6	5.7	ns
	3-state output disable time n $\overline{O E}_{B A}$ to $n A_{n}$	see Figs 6 and 8	50 pF	-	3.3	4.6	ns
t_{w}	pulse width $n L E_{\text {AB }}$ or $n L E_{B A}$ HIGH	see Figs 5 and 8	50 pF	3.3	0.7	-	ns
	pulse width $n C P_{A B}$ or $n C P_{B A}$ HIGH or LOW	see Figs 5 and 8	50 pF	3.3	1.4	-	ns
$\mathrm{t}_{\text {su }}$	set-up time $n A_{n}$ before $n C P_{A B} \uparrow$ or $n B_{n}$ before $n C P_{B A} \uparrow$	see Figs 7 and 8	50 pF	+1.4	-0.1	-	ns
	set-up time CP HIGH or LOW $n A_{n}$ before $n L E_{A B} \downarrow$ or $n B_{n}$ before $n L E_{B A} \downarrow$	see Figs 7 and 8	50 pF	+1.0	-0.2	-	ns

36-bit universal bus transceiver with direction pin; 3-state

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	C_{L}				
t_{n}	hold time $n A_{n}$ after $n C P_{A B} \uparrow$ or $n B_{n}$ after $n C P_{B A} \uparrow$	see Figs 7 and 8	50 pF	1.6	0.3	-	ns
	hold time CP HIGH or LOW $n \mathrm{~A}_{\mathrm{n}}$ after $n L E_{\mathrm{AB}} \downarrow$ or nB_{n} after $n L E_{\mathrm{BA}} \downarrow$	see Figs 7 and 8	50 pF	1.5	0.1	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency	see Figs 5 and 8	50 pF	150	333	-	MHz

$\mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 0} \mathrm{V}$ to $3.6 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 . 5} \mathbf{n s}$; note 3

$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay $n A_{n}$ to $n B_{n} ; n B_{n}$ to $n A_{n}$ $n L E_{B A}$ to $n A_{n} ; n L E_{A B}$ to $n B_{n}$ $n C P_{B A}$ to $n A_{n} ; n C P_{A B}$ to $n B_{n}$	see Figs 4 and 8 see Figs 5 and 8 see Figs 5 and 8	50 pF 50 pF 50 pF	$\begin{aligned} & 1.0 \\ & 1.3 \\ & 1.4 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.0 \\ 3.4 \\ 3.3 \end{array}$	$\begin{aligned} & 4.2 \\ & 4.8 \\ & 4.9 \end{aligned}$	ns ns ns
$\mathrm{t}_{\text {PZH }} / \mathrm{t}_{\text {PZL }}$	3-state output enable time $\mathrm{nOE}_{\text {AB }}$ to $n B_{n}$	see Figs 6 and 8	50 pF	1.0	2.4	4.6	ns
	3-state output enable time $n \overline{O E}_{B A}$ to $n A_{n}$	see Figs 6 and 8	50 pF	1.1	2.5	5.0	ns
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PLZ }}$	3 -state output disable time $\mathrm{nOE}_{\text {AB }}$ to $n B_{n}$	see Figs 6 and 8	50 pF	1.4	2.9	5.0	ns
	3-state output disable time $n \overline{O E}_{B A}$ to $n A_{n}$	see Figs 6 and 8	50 pF	1.3	3.1	4.2	ns
t_{w}	pulse width $n L E_{\text {AB }}$ or $n L E_{B A}$ HIGH	see Figs 5 and 8	50 pF	3.3	0.9	-	ns
	pulse width $\mathrm{nCP}_{\mathrm{AB}}$ or $\mathrm{nCP}_{\mathrm{BA}}$ HIGH or LOW	see Figs 5 and 8	50 pF	3.3	1.1	-	ns
$\mathrm{t}_{\text {su }}$	set-up time $n A_{n}$ before $n C P_{A B} \uparrow$ or $n B_{n}$ before $n C P_{B A} \uparrow$	see Figs 7 and 8	50 pF	+1.3	-0.3	-	ns
	set-up time CP HIGH or LOW $n A_{n}$ before $n L E_{A B} \downarrow$ or $n B_{n}$ before $n L E_{B A} \downarrow$	see Figs 7 and 8	50 pF	1.0	0.3	-	ns
t_{h}	hold time $n A_{n}$ after $n C P_{A B} \uparrow$ or $n B_{n}$ after $n C P_{B A} \uparrow$	see Figs 7 and 8	50 pF	+1.3	-0.4	-	ns
	hold time CP HIGH or LOW $n A_{n}$ after $n L E_{A B} \downarrow$ or $n B_{n}$ after $n L E_{B A} \downarrow$	see Figs 7 and 8	50 pF	1.2	0.1	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency	see Figs 5 and 8	50 pF	150	340	-	MHz

Notes

1. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

36-bit universal bus transceiver with direction pin;

3-state

AC WAVEFORMS

$\mathbf{V}_{\mathbf{C c}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{I}}$
2.3 V to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}
2.7 V	1.5 V	2.7 V
3.0 V to 3.6 V	1.5 V	2.7 V

V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 4 Input $n A_{n}, n B_{n}$ to output $n B_{n}, \mathrm{nA}_{n}$ propagation delay times.

$\mathrm{V}_{\mathbf{c c}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{I}}$
2.3 V to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}
2.7 V	1.5 V	2.7 V
3.0 V to 3.6 V	1.5 V	2.7 V

V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.

Fig. 5 Latch enable input ($n L E_{A B}, n L E_{B A}$) and clock input $\left(\mathrm{nCP}_{\mathrm{AB}}, n C P_{B A}\right)$ to output propagation delays and their pulse width.

36-bit universal bus transceiver with direction pin;

 3-state
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 6 3-state enable and disable times.

The shaded areas indicate when the input is permitted to change for predictable output performance.

$\mathbf{V}_{\mathbf{C c}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{I}}$
2.3 V to 2.7 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}
2.7 V	1.5 V	2.7 V
3.0 V to 3.6 V	1.5 V	2.7 V

V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 7 Data set-up and hold times for the $n A_{n}$ and $n B_{n}$ inputs to the $n L E_{A B}, n L E_{B A}, n C P_{A B}$ and $n C P_{B A}$ inputs.

36-bit universal bus transceiver with direction pin;

 3-state

Fig. 8 Load circuitry for switching times.

36-bit universal bus transceiver with direction pin;

 3-state
PACKAGE OUTLINE

LFBGA114: plastic low profile fine-pitch ball grid array package; 114 balls; body $16 \times 5.5 \times 1.05 \mathrm{~mm}$ SOT537-1

36-bit universal bus transceiver with direction pin; 3-state

74ALVCH32501

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

