Dual D-Type Positive Edge-Triggered Flip-Flop

The SN74LS74A dual edge-triggered flip-flop utilizes Schottky TTL circuitry to produce high speed D-type flip-flops. Each flip-flop has individual clear and set inputs, and also complementary Q and \overline{Q} outputs.

Information at input D is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the HIGH or the LOW level, the D input signal has no effect.

ON Semiconductor Formerly a Division of Motorola

http://onsemi.com

LOW POWER SCHOTTKY

MODE SELECT – TRUTH TABLE

OPERATING MODE		INPUTS	OUTPUTS		
OF ERATING MODE	SD	SD	D	Q	Q
Set	L	Н	Х	Н	L
Reset (Clear)	Н	L	Х	L	Н
*Undetermined	L	L	Х	Н	н
Load "1" (Set)	Н	Н	h	Н	L
Load "0" (Reset)	Н	Н	I	L	Н

Both outputs will be HIGH while both \overline{S}_D and \overline{C}_D are LOW, but the output states are unpredictable if \overline{S}_D and \overline{C}_D go HIGH simultaneously. If the levels at the set and clear are near V_{IL} maximum then we cannot guarantee to meet the minimum level for V_{OH}.

H, h = HIGH Voltage Level

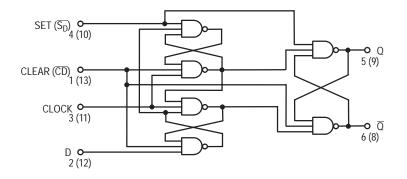
L, I = LOW Voltage Level

X = Don't Care

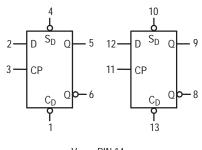
I, h (q) = Lower case letters indicate the state of the referenced input

(or output) one set-up time prior to the HIGH to LOW clock transition.

D SUFFIX CASE 751A


GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Мах	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA


ORDERING INFORMATION

Device	Package	Shipping
SN74LS74AN	14 Pin DIP	2000 Units/Box
SN74LS74AD	14 Pin	2500/Tape & Reel

LOGIC DIAGRAM (Each Flip-Flop)

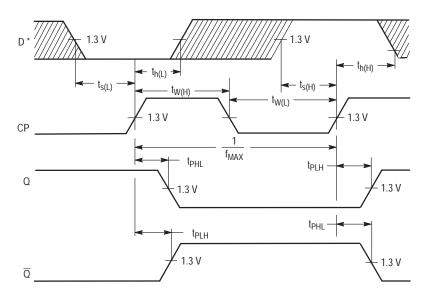
LOGIC SYMBOL

V_{CC} = PIN 14 GND = PIN 7

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
			0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}	Output LOW Voltage		0.35	0.5	V	l _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
IIH	Input High Current Data, Clock Set, Clear			20 40	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
	Data, Clock Set, Clear			0.1 0.2	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
IIL	Input LOW Current Data, Clock Set, Clear			-0.4 -0.8	mA	V _{CC} = MAX, V _{IN} = 0.4 V	
I _{OS}	Output Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	
I _{CC}	Power Supply Current			8.0	mA	V _{CC} = MAX	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

		Limits					
Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions	
f _{MAX}	Maximum Clock Frequency	25	33		MHz	Figure 1	
t _{PLH}	Clock, Clear, Set to Output		13	25	ns	Figure 1	V _{CC} = 5.0 V C _L = 15 pF
t _{PHL}	Clock, Clear, Set to Output		25	40	ns		

AC SETUP REQUIREMENTS (T_A = 25° C)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t _{W (H)}	Clock	25			ns	Figure 1	
t _{W (L)}	Clear, Set	25			ns	Figure 2	
	Data Setup Time — HIGH	20			ns	Figure 1	V _{CC} = 5.0 V
t _s	LOW	20			ns		
t _h	Hold Time	5.0			ns	Figure 1	

AC WAVEFORMS

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 1. Clock to Output Delays, Data Set-Up and Hold Times, Clock Pulse Width

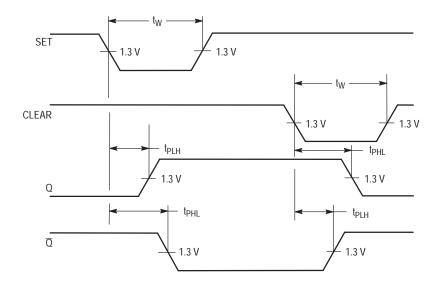


Figure 2. Set and Clear to Output Delays, Set and Clear Pulse Widths

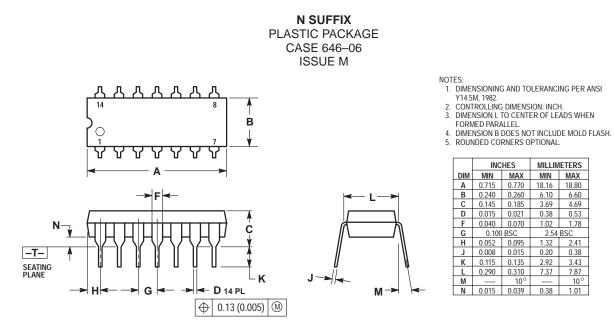
PACKAGE DIMENSIONS

MILLIMETERS

2.54 BSC 2.41 0.38 1.32 0.20

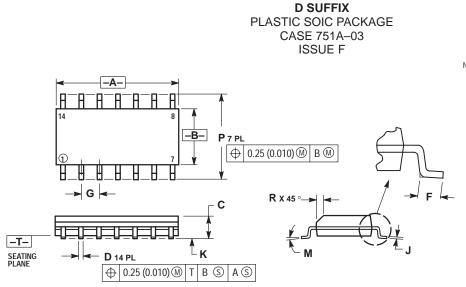
3.43

10°


1.01

2.92

7.37 7.87



0.38

http://onsemi.com 5

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

 DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMI MATFRIAL CONDITION. MAXIMUM MATERIAL CONDITION.

MILLIMETERS INCHES DIM MIN MAX MIN MAX Α 8.55 8.75 0.337 0.344 B 3.80 4.00 0.150 0.157 1.35 0.35 C D 1.75 0.054 0.068 0.49 0.014 0.019 F 0.40 1.25 0.016 0.049 G J
 1.27 BSC
 0.050 BSC

 0.19
 0.25
 0.008
 0.009

 K
 0.10
 0.25
 0.004
 0.009

 M
 0°
 7°
 0°
 7°

 P
 5.80
 6.20
 0.228
 0.244

 P
 5.80
 6.20
 0.228
 0.244

 R
 0.25
 0.50
 0.010
 0.019

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and idistributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.